Identification of building floors in a 3D city model

Bige Tunçer, Francisco Benita, Hugh Tay

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

This paper presents a methodology to identify building floors within a 3D city model using a large data set of Wi-Fi positioning and barometer data collected by about 50,000 students in Singapore. We defined discrete gaps in air pressure clusters in 0.0001 lat, lon grid cells at 60 second intervals. Clusters of pressure points are indicative of individual floors in buildings. Using this method, we find that 1% of SG's population can cover ~5% of all built-up area in the city. We also constructed a citywide 3D path-search engine by applying A*-search to crowd densities rather than shortest distances. This method doesn't require the use of any a priori information such as floor plans, and is computationally efficient.
Originele taal-2Engels
Titel2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT)
UitgeverijIEEE/LEOS
Pagina's16-20
Aantal pagina's5
ISBN van geprinte versie978-1-5386-0760-2
DOI's
StatusGepubliceerd - 11 okt. 2017
Extern gepubliceerdJa
Evenement2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT) - Irbid/Amman, Jordan
Duur: 9 okt. 201711 okt. 2017

Congres

Congres2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT)
Periode9/10/1711/10/17

Vingerafdruk

Duik in de onderzoeksthema's van 'Identification of building floors in a 3D city model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit