Hybrid Inference with Invertible Neural Networks in Factor Graphs

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
61 Downloads (Pure)

Samenvatting

This paper bridges the gap in the literature between neural networks and probabilistic graphical models. Invertible neural networks are incorporated in factor graphs and inference in this model is described by linearization of the network. Consequently, hybrid probabilistic inference in the model is realized through message passing with local constraints on the Bethe free energy. We provide the local Bethe free energy for the invertible neural network node, which allows for evaluation of the performance of the entire probabilistic model. Experimental results show effective hybrid inference in a neural network-based probabilistic model for a binary classification task, paving the way towards a novel class of machine learning models.
Originele taal-2Engels
Titel30th European Signal Processing Conference, EUSIPCO 2022 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1397-1401
Aantal pagina's5
ISBN van elektronische versie978-90-827970-9-1
ISBN van geprinte versie978-1-6654-6799-5
StatusGepubliceerd - 2 sep. 2022
Evenement30th European Signal Processing Conference, EUSIPCO 2022 - Belgrade, Servië
Duur: 29 aug. 20222 sep. 2022

Congres

Congres30th European Signal Processing Conference, EUSIPCO 2022
Verkorte titelEUSIPCO 2022
Land/RegioServië
StadBelgrade
Periode29/08/222/09/22

Vingerafdruk

Duik in de onderzoeksthema's van 'Hybrid Inference with Invertible Neural Networks in Factor Graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit