Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for arbitrary boundary conditions

R. Pagan Munoz, M.C.J. Hornikx

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademic

Samenvatting

The wave-based Fourier Pseudospectral time-domain (Fourier-PSTD) method was shown to be an effective way of modeling outdoor acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. A hybrid modeling approach was recently presented to solve the LEE, coupling Fourier-PSTD with the nodal discontinuous Galerkin (DG) time domain method. The hybrid approach allows the computation of complex geometries by using the benefits of the DG methodology at the boundaries while keeping Fourier-PSTD in the bulk of the domain. This paper presents the implementation of arbitrary boundary conditions in the novel methodology, for instance, frequency dependent boundaries. The paper includes an application case of sound propagation for an urban scenario.
Originele taal-2Engels
Titel173rd Meeting of the Acoustical Society of America and the 8th Forum Acusticum
Plaats van productieBoston, Massachusetts
UitgeverijAcoustical Society of America
Pagina's3809-3809
Volume141
ISBN van geprinte versie0001-4966
DOI's
StatusGepubliceerd - jun. 2017
Evenement173rd Meeting of the Acoustical Society of America and the 8th Forum Acusticum (Acoustics2017), 25-29 June 2017, Boston, USA - Boston, Verenigde Staten van Amerika
Duur: 25 jun. 201729 jun. 2017
http://acousticalsociety.org/content/acoustics-17-boston

Congres

Congres173rd Meeting of the Acoustical Society of America and the 8th Forum Acusticum (Acoustics2017), 25-29 June 2017, Boston, USA
Verkorte titelAcoustics'17
Land/RegioVerenigde Staten van Amerika
StadBoston
Periode25/06/1729/06/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for arbitrary boundary conditions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit