Hybrid Decision Making for Scalable Multi-Agent Navigation: Integrating Semantic Maps, Discrete Coordination, and Model Predictive Control

Onderzoeksoutput: WerkdocumentPreprintProfessioneel

6 Downloads (Pure)

Samenvatting

This paper presents a framework for multi-agent navigation in structured but dynamic environments, integrating three key components: a shared semantic map encoding metric and semantic environmental knowledge, a claim policy for coordinating access to areas within the environment, and a Model Predictive Controller for generating motion trajectories that respect environmental and coordination constraints. The main advantages of this approach include: (i) enforcing area occupancy constraints derived from specific task requirements; (ii) enhancing computational scalability by eliminating the need for collision avoidance constraints between robotic agents; and (iii) the ability to anticipate and avoid deadlocks between agents. The paper includes both simulations and physical experiments demonstrating the framework's effectiveness in various representative scenarios.
Originele taal-2Engels
UitgeverarXiv.org
Aantal pagina's8
Volume2410.12651
DOI's
StatusGepubliceerd - 16 okt. 2024

Trefwoorden

  • cs.RO

Vingerafdruk

Duik in de onderzoeksthema's van 'Hybrid Decision Making for Scalable Multi-Agent Navigation: Integrating Semantic Maps, Discrete Coordination, and Model Predictive Control'. Samen vormen ze een unieke vingerafdruk.

Citeer dit