Human vs. Machine: Evaluation of Fluorescence Micrographs

T.W. Nattkemper, T. Twellmann, W. Schubert, H. Ritter

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

53 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

To enable high-throughput screening of molecular phenotypes, multi-parameter fluorescence microscopy is applied. Object of our study is lymphocytes which invade human tissue. One important basis for our collaborative project is the development of methods for automatic and accurate evaluation of fluorescence micrographs. As a part of this, we focus on the question of how to measure the accuracy of microscope image interpretation, by human experts or a computer system. Following standard practice we use methods motivated by receiver operator characteristics to discuss the accuracies of human experts and of neural network-based algorithms. For images of good quality the algorithms achieve the accuracy of the medium-skilled experts. In images with increased noise, the classifiers are outperformed by some of the experts. Furthermore, the neural network-based cell detection is much faster than the human experts.
Originele taal-2Engels
Pagina's (van-tot)31-43
TijdschriftComputers in Biology and Medicine
Volume33
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2003

Vingerafdruk

Duik in de onderzoeksthema's van 'Human vs. Machine: Evaluation of Fluorescence Micrographs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit