TY - JOUR
T1 - How the alternating degeneracy in rotational Raman spectra of CO2 and C2H2 reveals the vibrational temperature
AU - van den Bekerom, D.C.M.
AU - Palomares Linares, J.M.
AU - van Veldhuizen, E.M.
AU - Nijdam, S.
AU - van de Sanden, M.C.M.
AU - Van Rooij, G.J.
PY - 2018/7/10
Y1 - 2018/7/10
N2 - The contribution of higher vibrational levels to the rotational spectrum of linear polyatomic molecules with a center of symmetry (CO2 and C2H2) is assessed. An apparent nuclear degeneracy is analytically formulated by vibrational averaging and compared to numerical averaging over vibrational levels. It enables inferring the vibrational temperature of the bending and asymmetric stretching modes from the ratio of even to odd peaks in the rotational Raman spectrum. The contribution from higher vibrational levels is already observable at room temperature as g???e∕o 0.96∕0.04 for CO2 and g???e∕o 1.16∕2.84 for C2H2. The use of the apparent degeneracy to account for higher vibrational levels is demonstrated on spectra measured for a CO2 microwave plasma in the temperature range of 300–3500 K, and shown to be valid up to 1500 K.
AB - The contribution of higher vibrational levels to the rotational spectrum of linear polyatomic molecules with a center of symmetry (CO2 and C2H2) is assessed. An apparent nuclear degeneracy is analytically formulated by vibrational averaging and compared to numerical averaging over vibrational levels. It enables inferring the vibrational temperature of the bending and asymmetric stretching modes from the ratio of even to odd peaks in the rotational Raman spectrum. The contribution from higher vibrational levels is already observable at room temperature as g???e∕o 0.96∕0.04 for CO2 and g???e∕o 1.16∕2.84 for C2H2. The use of the apparent degeneracy to account for higher vibrational levels is demonstrated on spectra measured for a CO2 microwave plasma in the temperature range of 300–3500 K, and shown to be valid up to 1500 K.
UR - http://www.scopus.com/inward/record.url?scp=85047332827&partnerID=8YFLogxK
U2 - 10.1364/AO.57.005694
DO - 10.1364/AO.57.005694
M3 - Article
C2 - 30118084
AN - SCOPUS:85047332827
SN - 0003-6935
VL - 57
SP - 5694
EP - 5702
JO - Applied Optics
JF - Applied Optics
IS - 20
ER -