Samenvatting
The industrial challenge of the GECCO 2021 conference is an expensive optimisation problem, where the parameters of a hospital simulation model need to be tuned to optimality. We show how a surrogate-based optimisation framework, with a random ReLU expansion as the surrogate model, outperforms other methods such as Bayesian optimisation, Hyperopt, and random search on this problem.
Originele taal-2 | Engels |
---|---|
Titel | GECCO '21 |
Subtitel | Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion |
Uitgeverij | Association for Computing Machinery, Inc |
Pagina's | 13-14 |
Aantal pagina's | 2 |
ISBN van elektronische versie | 9781450383516 |
DOI's | |
Status | Gepubliceerd - 7 jul. 2021 |
Evenement | 2021 Genetic and Evolutionary Computation Conference, GECCO 2021 - Virtual/Online, Lille, Frankrijk Duur: 10 jul. 2021 → 14 jul. 2021 https://gecco-2021.sigevo.org/HomePage |
Congres
Congres | 2021 Genetic and Evolutionary Computation Conference, GECCO 2021 |
---|---|
Verkorte titel | GECCO 2021 |
Land/Regio | Frankrijk |
Stad | Lille |
Periode | 10/07/21 → 14/07/21 |
Internet adres |
Bibliografische nota
Publisher Copyright:© 2021 Owner/Author.