Hospital simulation model optimisation with a random ReLU expansion surrogate model

Laurens Bliek, Arthur Guijt, Rickard Karlsson

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

The industrial challenge of the GECCO 2021 conference is an expensive optimisation problem, where the parameters of a hospital simulation model need to be tuned to optimality. We show how a surrogate-based optimisation framework, with a random ReLU expansion as the surrogate model, outperforms other methods such as Bayesian optimisation, Hyperopt, and random search on this problem.

Originele taal-2Engels
TitelGECCO '21
SubtitelProceedings of the 2021 Genetic and Evolutionary Computation Conference Companion
UitgeverijAssociation for Computing Machinery, Inc
Pagina's13-14
Aantal pagina's2
ISBN van elektronische versie9781450383516
DOI's
StatusGepubliceerd - 7 jul. 2021
Evenement2021 Genetic and Evolutionary Computation Conference, GECCO 2021 - Virtual/Online, Lille, Frankrijk
Duur: 10 jul. 202114 jul. 2021
https://gecco-2021.sigevo.org/HomePage

Congres

Congres2021 Genetic and Evolutionary Computation Conference, GECCO 2021
Verkorte titelGECCO 2021
Land/RegioFrankrijk
StadLille
Periode10/07/2114/07/21
Internet adres

Bibliografische nota

Publisher Copyright:
© 2021 Owner/Author.

Vingerafdruk

Duik in de onderzoeksthema's van 'Hospital simulation model optimisation with a random ReLU expansion surrogate model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit