Homography Estimation for Camera Calibration in Complex Topological Scenes

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

Surveillance videos and images are used for a broad set of applications, ranging from traffic analysis to crime detection. Extrinsic camera calibration data is important for most analysis applications. However, security cameras are susceptible to environmental conditions and small camera movements, resulting in a need for an automated re-calibration method that can account for these varying conditions. In this paper, we present an automated camera-calibration process leveraging a dictionary-based approach that does not require prior knowledge on any camera settings. The method consists of a custom implementation of a Spatial Transformer Network (STN) and a novel topological loss function. Experiments reveal that the proposed method improves the IoU metric by up to 12% w.r.t. a state-of-the-art model across five synthetic datasets and the World Cup 2014 dataset.
Originele taal-2Engels
Titel2023 IEEE Intelligent Vehicles Symposium (IV)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1-8
Aantal pagina's8
ISBN van elektronische versie979-8-3503-4691-6
DOI's
StatusGepubliceerd - 27 jul. 2023
Evenement34th IEEE Intelligent Vehicles Symposium, IV 2023 - Anchorage, Verenigde Staten van Amerika
Duur: 4 jun. 20237 jun. 2023

Congres

Congres34th IEEE Intelligent Vehicles Symposium, IV 2023
Verkorte titelIV 2023
Land/RegioVerenigde Staten van Amerika
StadAnchorage
Periode4/06/237/06/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Homography Estimation for Camera Calibration in Complex Topological Scenes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit