HomeRun: A Cardinality Estimation Advisor for Graph Databases

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Downloads (Pure)

Samenvatting

Database systems depend on cardinality estimates for generation of optimal query execution plans. Selecting an appropriate cardinality estimation technique involves navigating trade-offs, including the accuracy of estimates, time required for estimation, and necessary statistics. These trade-offs can lead to different choices based on the dataset and query workload. Unfortunately there is limited support for advising graph database users in exploring these trade-offs and making the right choices for their scenarios. To address this critical gap, we introduce an advisor tool, HomeRun, which analyzes the performance of various cardinality estimation techniques in given usage scenarios. We explain HomeRun's capabilities using the industry-standard LSQB benchmark and synthetic scenarios. HomeRun reveals how minor changes in the dataset can significantly impact the conclusions about the performance of cardinality estimation techniques.

Originele taal-2Engels
TitelGRADES-NDA '24
SubtitelProceedings of the 7th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)
RedacteurenOlaf Hartig, Zoi Kaoudi
UitgeverijAssociation for Computing Machinery, Inc.
Aantal pagina's9
ISBN van elektronische versie979-8-4007-0653-0
DOI's
StatusGepubliceerd - 9 jun. 2024
Evenement7th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences and Systems and Network Data Analytics, GRADES-NDA 2022, co-located with ACM SIGMOD - Santiago, Chili
Duur: 14 jun. 202414 jun. 2024

Congres

Congres7th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences and Systems and Network Data Analytics, GRADES-NDA 2022, co-located with ACM SIGMOD
Land/RegioChili
StadSantiago
Periode14/06/2414/06/24

Vingerafdruk

Duik in de onderzoeksthema's van 'HomeRun: A Cardinality Estimation Advisor for Graph Databases'. Samen vormen ze een unieke vingerafdruk.

Citeer dit