Hierarchical Object Detection and Classification Using SSD Multi-Loss

Matthijs H. Zwemer, Rob G.J. Wijnhoven, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

When merging existing similar datasets, it would be attractive to benefit from a higher detection rate of objects and the additional partial ground-truth samples for improving object classification. To this end, a novel CNN detector with a hierarchical binary classification system is proposed. The detector is based on the Single-Shot multibox Detector (SSD) and inspired by the hierarchical classification used in the YOLO9000 detector. Localization and classification are separated during training, by introducing a novel loss term that handles hierarchical classification in the loss function (SSD-ML). We experiment with the proposed SSD-ML detector on the generic PASCAL VOC dataset and show that additional super-categories can be learned with minimal impact on the overall accuracy. Furthermore, we find that not all objects are required to have classification label information as classification performance only drops from 73.3 % to 70.6 % while 60 % of the label information is removed. The flexibility of the detector with respect to the different levels of details in label definitions is investigated for a traffic surveillance application, involving public and proprietary datasets with non-overlapping class definitions. Including classification label information from our dataset raises the performance significantly from 70.7 % to 82.2 %. The experiments show that the desired hierarchical labels can be learned from the public datasets, while only using box information from our dataset. In general, this shows that it is possible to combine existing datasets with similar object classes and partial annotations and benefit in terms of growth of detection rate and improved class categorization performance.

Originele taal-2Engels
TitelComputer Vision, Imaging and Computer Graphics Theory and Applications - 15th International Joint Conference, VISIGRAPP 2020, Revised Selected Papers
Subtitel15th International Joint Conference, VISIGRAPP 2020 Valletta, Malta, February 27–29, 2020, Revised Selected Papers
RedacteurenKadi Bouatouch, A. Augusto de Sousa, Manuela Chessa, Alexis Paljic, Andreas Kerren, Christophe Hurter, Giovanni Maria Farinella, Petia Radeva, Jose Braz
Plaats van productieCham
UitgeverijSpringer
Hoofdstuk12
Pagina's268-296
Aantal pagina's29
ISBN van elektronische versie978-3-030-94893-1
ISBN van geprinte versie978-3-030-94892-4
DOI's
StatusGepubliceerd - 1 jan. 2022
Evenement15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020 - Valletta, Malta
Duur: 27 feb. 202029 feb. 2020

Publicatie series

NaamCommunications in Computer and Information Science (CCIS)
UitgeverijSpringer
Volume1474
ISSN van geprinte versie1865-0929
ISSN van elektronische versie1865-0937

Congres

Congres15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020
Land/RegioMalta
StadValletta
Periode27/02/2029/02/20

Vingerafdruk

Duik in de onderzoeksthema's van 'Hierarchical Object Detection and Classification Using SSD Multi-Loss'. Samen vormen ze een unieke vingerafdruk.
  • SSD-ML: hierarchical object classification for traffic surveillance

    Zwemer, M., Wijnhoven, R. G. J. & de With, P. H. N., 27 feb. 2020, 15th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP2020). Farinella, G. M., Radeva, P. & Braz, J. (uitgave). SciTePress Digital Library, blz. 250-259 10 blz. VISAPP20-RP-35

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    Open Access
    Bestand

Citeer dit