Hierarchical clustering of metamodels for comparative analysis and visualization

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    31 Citaten (Scopus)
    5 Downloads (Pure)

    Samenvatting

    Many applications in Model-Driven Engineering involve processing multiple models or metamodels. A good example is the comparison and merging of metamodel variants into a common metamodel in domain model recovery. Although there are many sophisticated techniques to process the input dataset, little attention has been given to the initial data analysis, visualization and filtering activities. These are hard to ignore especially in the case of a large dataset, possibly with outliers and sub-groupings. In this paper we present a generic approach for metamodel comparison, analysis and visualization as an exploratory first step for domain model recovery. We propose representing metamodels in a vector space model, and applying hierarchical clustering techniques to compare and visualize them as a tree structure. We demonstrate our approach on two Ecore datasets: a collection of 50 state machine metamodels extracted from GitHub as top search results; and ∼

    100 metamodels from 16 different domains, obtained from AtlanMod Metamodel Zoo.
    Originele taal-2Engels
    TitelModelling Foundations and Applications
    Subtitel12th European Conference, ECMFA 2016, Held as Part of STAF 2016, Vienna, Austria, July 6-7, 2016, Proceedings
    RedacteurenA. Wąsowski, H. Loenn
    Plaats van productieDordrecht
    UitgeverijSpringer
    Pagina's3-18
    ISBN van elektronische versie978-3-319-42061-5
    ISBN van geprinte versie978-3-319-42060-8
    DOI's
    StatusGepubliceerd - 2016

    Publicatie series

    NaamLecture Notes in Computer Science
    UitgeverijSpringer
    Volume9764

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Hierarchical clustering of metamodels for comparative analysis and visualization'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit