Heavy-traffic single-server queues and the transform method

M. A. A. Boon, A. J. E. M. Janssen, J. S. H. van Leeuwaarden

Onderzoeksoutput: WerkdocumentAcademic

40 Downloads (Pure)

Samenvatting

Heavy-traffic limit theory deals with queues that operate close to criticality and face severe queueing times. Let $W$ denote the steady-state waiting time in the ${\rm GI}/{\rm G}/1$ queue. Kingman (1961) showed that $W$, when appropriately scaled, converges in distribution to an exponential random variable as the system's load approaches 1. The original proof of this famous result uses the transform method. Starting from the Laplace transform of the pdf of $W$ (Pollaczek's contour integral representation), Kingman showed convergence of transforms and hence weak convergence of the involved random variables. We apply and extend this transform method to obtain convergence of moments with error assessment. We also demonstrate how the transform method can be applied to so-called nearly deterministic queues in a Kingman-type and a Gaussian heavy-traffic regime. We demonstrate numerically the accuracy of the various heavy-traffic approximations.
Originele taal-2Engels
StatusGepubliceerd - 20 jun. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Heavy-traffic single-server queues and the transform method'. Samen vormen ze een unieke vingerafdruk.

Citeer dit