Hardware implementation of backpropagation using progressive gradient descent for in situ training of multilayer neural networks

Eveline R.W. van Doremaele, Tim Stevens, Stijn Ringeling, Simone Spolaor, Marco Fattori (Corresponding author), Yoeri van de Burgt (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

17 Downloads (Pure)

Samenvatting

Neural network training can be slow and energy-expensive due to the frequent transfer of weight data between digital memory and processing units. Neuromorphic systems can accelerate neural networks by performing multiply-accumulate operations in parallel using nonvolatile analog memory. However, executing the widely used backpropagation training algorithm in multilayer neural networks requires information-and therefore storage-of the partial derivatives of the weight values preventing suitable and scalable implementation in hardware. Here, we propose a hardware implementation of the backpropagation algorithm that progressively updates each layer using in situ stochastic gradient descent, avoiding this storage requirement. We experimentally demonstrate the in situ error calculation and the proposed progressive backpropagation method in a multilayer hardware-implemented neural network. We confirm identical learning characteristics and classification performance compared to conventional backpropagation in software. We show that our approach can be scaled to large and deep neural networks, enabling highly efficient training of advanced artificial intelligence computing systems.

Originele taal-2Engels
Artikelnummereado8999
Aantal pagina's7
TijdschriftScience Advances
Volume10
Nummer van het tijdschrift28
DOI's
StatusGepubliceerd - jul. 2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Hardware implementation of backpropagation using progressive gradient descent for in situ training of multilayer neural networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit