Hardness results on voronoi, laguerre and apollonius diagrams

Kevin Buchin, Pedro Mac Hado Manhães De Castro, Olivier Devillers, Menelaos Karavelas

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

We show that converting Apollonius and Laguerre diagrams from an already built Delaunay triangulation of a set of n points in 2D requires at least (n log n) computation time. We also show that converting an Apollonius diagram of a set of n weighted points in 2D from a Laguerre diagram and vice-versa requires at least (n log n) computation time as well. Furthermore, we present a very simple randomized incremental construction algorithm that takes expected O(n log n) computation time to build an Apollonius diagram of non-overlapping circles in 2D.

Originele taal-2Engels
TitelProceedings of the 31st Canadian Conference on Computational Geometry, CCCG 2019
Pagina's99-104
Aantal pagina's6
StatusGepubliceerd - 10 aug. 2019
Evenement31st Canadian Conference on Computational Geometry, CCCG 2019 - Edmonton, Canada
Duur: 8 aug. 201910 aug. 2019

Congres

Congres31st Canadian Conference on Computational Geometry, CCCG 2019
Land/RegioCanada
StadEdmonton
Periode8/08/1910/08/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Hardness results on voronoi, laguerre and apollonius diagrams'. Samen vormen ze een unieke vingerafdruk.

Citeer dit