Hard equality constrained integer knapsacks

K.I. Aardal, A.K. Lenstra

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

17 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve by standard methods such as branch-and-bound, even if the number of variables is as small as ten. We observe that not only the sizes of the numbers a 0, a 1,..., a n, but also their structure, have a large impact on the difficulty of the instances. Moreover, we demonstrate that the characteristics that make the instances so difficult to solve by branch-and-bound make the solution of a certain reformulation of the problem almost trivial. We accompany our results by a small computational study.
Originele taal-2Engels
TitelProceedings 9th IPCO (Cambridge MA, USA, May 27-29, 2002)
RedacteurenW.J. Cook, A.S. Schulz
Plaats van productieBerlin
UitgeverijSpringer
Pagina's350-366
ISBN van geprinte versie3-540-43676-6
DOI's
StatusGepubliceerd - 2002

Publicatie series

NaamLecture Notes in Computer Science
Volume2337
ISSN van geprinte versie0302-9743

Vingerafdruk

Duik in de onderzoeksthema's van 'Hard equality constrained integer knapsacks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit