Goal-oriented error estimation and adaptivity for free-boundary problems: the shape-linearization approach

K.G. Zee, van der, E.H. Brummelen, van, R. Borst, de

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

18 Citaten (Scopus)
180 Downloads (Pure)

Samenvatting

We develop duality-based a posteriori error estimates for functional outputs of solutions of free-boundary problems via shape-linearization principles. To derive an appropriate dual (linearized adjoint) problem, we linearize the domain dependence of the very weak form and goal functional of interest using techniques from shape calculus. We show for a Bernoulli-type free-boundary problem that the dual problem corresponds to a Poisson problem with a Robin-type boundary condition involving the curvature. Moreover, we derive a generalization of the dual problem for nonsmooth free boundaries which includes a natural extension of the curvature term. The effectivity of the dual-based error estimate and its usefulness in goal-oriented adaptive mesh refinement is demonstrated by numerical experiments.
Originele taal-2Engels
Pagina's (van-tot)1093-1118
TijdschriftSIAM Journal on Scientific Computing
Volume32
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 2010

Vingerafdruk

Duik in de onderzoeksthema's van 'Goal-oriented error estimation and adaptivity for free-boundary problems: the shape-linearization approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit