Global (volume-averaged) model of inductively coupled chlorine plasma : influence of Cl wall recombination and external heating on continuous and pulse-modulated plasmas

E.H. Kemaneci, E.A.D. Carbone, J.P. Booth, W.A.A.D. Graef, J. Dijk, van, G.M.W. Kroesen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

13 Citaten (Scopus)
129 Downloads (Pure)


An inductively coupled radio-frequency plasma in chlorine is investigated via a global (volume-averaged) model, both in continuous and square wave modulated power input modes. After the power is switched off (in a pulsed mode) an ion–ion plasma appears. In order to model this phenomenon, a novel quasi-neutrality implementation is proposed. Several distinct Cl wall recombination probability measurements exist in the literature, and their effect on the simulation data is compared. We also investigated the effect of the gas temperature that was imposed over the range 300–1500 K, not calculated self-consistently. Comparison with published experimental data from several sources for both continuous and pulsed modes shows good agreement with the simulation results.
Originele taal-2Engels
Pagina's (van-tot)045002-1/14
Aantal pagina's14
TijdschriftPlasma Sources Science and Technology
Nummer van het tijdschrift4
StatusGepubliceerd - aug 2014


Citeer dit