TY - JOUR
T1 - Glassy dynamics from generalized mode-coupling theory
T2 - Existence and uniqueness of solutions for hierarchically coupled integro-differential equations
AU - Biezemans, Rutger A.
AU - Ciarella, Simone
AU - Çaylak, Onur
AU - Baumeier, Björn
AU - Janssen, Liesbeth M.C.
PY - 2020/10
Y1 - 2020/10
N2 - Generalized mode-coupling theory (GMCT) is a first-principlesbased and systematically correctable framework to predict the complex relaxation dynamics of glass-forming materials. The formal theory amounts to a hierarchy of infinitely many coupled integro-differential equations, which may be approximated using a suitable finite-order closure relation. Although previous studies have suggested that finite-order GMCT leads to well-defined solutions, and that the hierarchy converges as the closure level increases, no rigorous and general result in this direction is known. Here we unambiguously establish the existence and uniqueness of solutions to generic, schematic GMCT hierarchies that are closed at arbitrary finite order. We consider two types of commonly invoked closure approximations, namely mean-field and exponential closures. We also distinguish explicitly between overdamped and underdamped glassy dynamics, corresponding to hierarchies of first-order and second-order integro-differential equations, respectively. We find that truncated GMCT hierarchies closed under an exponential closure conform to previously developed mathematical theories, both in the overdamped and underdamped case, such that the existence of a unique solution can be readily inferred. Self-consistent mean-field closures, however, of which the well-known standard-MCT closure approximation is a special case, warrant additional arguments for mathematical rigor. We demonstrate that the existence of a priori bounds on the solution is sufficient to also prove that unique solutions exist for such self-consistent hierarchies. To complete our analysis, we present simple arguments to show that these a priori bounds must exist, motivated by the physical interpretation of the GMCT solutions as density correlation functions. Overall, our work contributes to the theoretical justification of GMCT for studies of the glass transition, placing this hierarchical framework on a firmer mathematical footing.
AB - Generalized mode-coupling theory (GMCT) is a first-principlesbased and systematically correctable framework to predict the complex relaxation dynamics of glass-forming materials. The formal theory amounts to a hierarchy of infinitely many coupled integro-differential equations, which may be approximated using a suitable finite-order closure relation. Although previous studies have suggested that finite-order GMCT leads to well-defined solutions, and that the hierarchy converges as the closure level increases, no rigorous and general result in this direction is known. Here we unambiguously establish the existence and uniqueness of solutions to generic, schematic GMCT hierarchies that are closed at arbitrary finite order. We consider two types of commonly invoked closure approximations, namely mean-field and exponential closures. We also distinguish explicitly between overdamped and underdamped glassy dynamics, corresponding to hierarchies of first-order and second-order integro-differential equations, respectively. We find that truncated GMCT hierarchies closed under an exponential closure conform to previously developed mathematical theories, both in the overdamped and underdamped case, such that the existence of a unique solution can be readily inferred. Self-consistent mean-field closures, however, of which the well-known standard-MCT closure approximation is a special case, warrant additional arguments for mathematical rigor. We demonstrate that the existence of a priori bounds on the solution is sufficient to also prove that unique solutions exist for such self-consistent hierarchies. To complete our analysis, we present simple arguments to show that these a priori bounds must exist, motivated by the physical interpretation of the GMCT solutions as density correlation functions. Overall, our work contributes to the theoretical justification of GMCT for studies of the glass transition, placing this hierarchical framework on a firmer mathematical footing.
KW - Aging
KW - Exact results
KW - Glassy dynamics
KW - Mode coupling theory
KW - Slow relaxation
UR - http://www.scopus.com/inward/record.url?scp=85096073278&partnerID=8YFLogxK
U2 - 10.1088/1742-5468/abb6e1
DO - 10.1088/1742-5468/abb6e1
M3 - Article
AN - SCOPUS:85096073278
SN - 1742-5468
VL - 2020
JO - Journal of Statistical Mechanics : Theory and Experiment
JF - Journal of Statistical Mechanics : Theory and Experiment
IS - 10
M1 - 103301
ER -