Generalized Random Sequential Adsorption on Erdős–Rényi Random Graphs

S. Dhara, J.S.H. van Leeuwaarden, D. Mukherjee

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    95 Citaten (Scopus)
    107 Downloads (Pure)

    Samenvatting

    We investigate random sequential adsorption (RSA) on a random graph via the following greedy algorithm: Order the n vertices at random, and sequentially declare each vertex either active or frozen, depending on some local rule in terms of the state of the neighboring vertices. The classical RSA rule declares a vertex active if none of its neighbors is, in which case the set of active nodes forms an independent set of the graph. We generalize this nearest-neighbor blocking rule in three ways and apply it to the Erdős–Rényi random graph. We consider these generalizations in the large-graph limit n→ ∞ and characterize the jamming constant, the limiting proportion of active vertices in the maximal greedy set.

    Originele taal-2Engels
    Pagina's (van-tot)1217-1232
    Aantal pagina's16
    TijdschriftJournal of Statistical Physics
    Volume164
    Nummer van het tijdschrift5
    Vroegere onlinedatum20 jul 2016
    DOI's
    StatusGepubliceerd - 1 sep 2016

    Vingerafdruk Duik in de onderzoeksthema's van 'Generalized Random Sequential Adsorption on Erdős–Rényi Random Graphs'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit