Gaussian Process Amplitude Demodulation By Message-Passing

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Gaussian Process Amplitude Modulation (GPAM) is a probabilistic model that assigns Gaussian Process priors to the modulator and the carrier and allows us to solve the amplitude demodulation (AD) problem by using inference methods in probability theory. Inference in GPAM results in Gaussian Process Probabilistic Amplitude Demodulation (GP-PAD). However, the mostly used inference technique for GP-PAD is maximum a posteriori (MAP), a point estimate method that is not entirely representative of Bayesian methods in general. In this paper, we provide a full Bayesian inference approach to GP-PAD model. More specifically, we represent the GPPAD model as a factor graph and use message-passing rules, namely Belief Propagation (BP) and Expectation Propagation (EP), to infer the marginal posteriors of the modulator and the carrier. Furthermore, we employ the Kalman smoothing solution to temporal GP regression models to achieve fast inference for GP models. We compare our approach to the baseline, popular demodulation methods in synthetic and real data experiments. The result shows that our method outperforms the baseline methods and converges.
Originele taal-2Engels
Titel2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP)
RedacteurenDanilo Comminiello, Michele Scarpiniti
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1-6
Aantal pagina's6
ISBN van elektronische versie979-8-3503-2411-2
DOI's
StatusGepubliceerd - 23 okt. 2023
Evenement33rd International Workshop on Machine Learning for Signal Processing, MLSP 2023 - Rome, Italië
Duur: 17 sep. 202320 sep. 2023

Congres

Congres33rd International Workshop on Machine Learning for Signal Processing, MLSP 2023
Verkorte titelMLSP 2023
Land/RegioItalië
StadRome
Periode17/09/2320/09/23

Financiering

Acknowledgements This work is partially financed by contributions from GN Hearing, PPS subsidy from Holland High Tech and the EAISI institute at TU Eindhoven.

FinanciersFinanciernummer
Holland High Tech
Eindhoven University of Technology

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Gaussian Process Amplitude Demodulation By Message-Passing'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit