Gaussian Mechanisms Against Statistical Inference: Synthesis Tools

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

36 Downloads (Pure)

Samenvatting

In this manuscript, we provide a set of tools (in terms of semidefinite programs) to synthesize Gaussian mechanisms to maximize privacy of databases. Information about the database is disclosed through queries requested by (potentially) adversarial users. We aim to keep part of the database private (private sensitive information); however, disclosed data could be used to estimate private information. To avoid an accurate estimation by the adversaries, we pass the requested data through distorting (privacy-preserving) mechanisms before transmission and send the distorted data to the user. These mechanisms consist of a coordinate transformation and an additive dependent Gaussian vector. We formulate the synthesis of distorting mechanisms in terms of semidefinite programs in which we seek to minimize the mutual information (our privacy metric) between private data and the disclosed distorted data given a desired distortion level -- how different actual and distorted data are allowed to be.
Originele taal-2Engels
Artikelnummer2111.15307
Aantal pagina's8
TijdschriftarXiv
Volume2021
DOI's
StatusGepubliceerd - 30 nov. 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'Gaussian Mechanisms Against Statistical Inference: Synthesis Tools'. Samen vormen ze een unieke vingerafdruk.

Citeer dit