Gamma generalized linear model-based control charts for high-purity processes

Caterina Rizzo (Corresponding author), Alessandro Di Bucchianico

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
8 Downloads (Pure)

Samenvatting

Statistical process monitoring of high-purity manufacturing processes becomes challenging if the defect rate depends on the fluctuations of a set of covariates (e.g., inspected weight, volume, temperature). This paper applies the generalized linear model framework to statistical process control for detecting contextual anomalies in high-purity processes. Different types of predictive residuals (i.e., Pearson, deviance, and quantile) and recursive residuals are considered, and the performance of these schemes is compared via a simulation study.

Originele taal-2Engels
Pagina's (van-tot)170-180
Aantal pagina's11
TijdschriftQuality and Reliability Engineering International
Volume40
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - feb. 2024

Bibliografische nota

Publisher Copyright:
© 2023 John Wiley & Sons Ltd.

Vingerafdruk

Duik in de onderzoeksthema's van 'Gamma generalized linear model-based control charts for high-purity processes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit