Fuzzy Logic for Knowledge-Driven and Data-Driven Modeling in Biomedical Sciences

Paolo Cazzaniga, Simone Spolaor, Caro Fuchs, Marco S. Nobile, Daniela Besozzi

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

Samenvatting

Fuzzy logic is characterized by relevant features, such as model interpretability and the capability of dealing with uncertain or heterogeneous data, which make it particularly suitable for the definition of mathematical models in the field of biomedical sciences. We describe here two different modeling approaches, based on a knowledge-driven or data-driven strategy, that we previously developed and applied for the definition, simulation and analysis of fuzzy inference systems and fuzzy networks. To showcase their benefit in biomedical sciences, we show three applications related to: (i) the determination of minimal drug combinations to induce apoptotic death in cancer cells, (ii) the analysis of oscillatory regimes in signal transduction pathways, and (iii) the assessment of tremor severity in a neurological disorder. These models are characterized by a high level of interpretability – thanks to the use of linguistic terms, fuzzy sets, and fuzzy rules written in human-comprehensible language – making their application suitable in real-world scenarios.

Originele taal-2Engels
TitelBig Data Analysis and Artificial Intelligence for Medical Sciences
RedacteurenBruno Carpentieri, Paola Lecca
UitgeverijJohn Wiley and Sons Inc.
Hoofdstuk2
Pagina's17-41
Aantal pagina's25
ISBN van elektronische versie9781119846567
ISBN van geprinte versie9781119846536
DOI's
StatusGepubliceerd - 7 mei 2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Fuzzy Logic for Knowledge-Driven and Data-Driven Modeling in Biomedical Sciences'. Samen vormen ze een unieke vingerafdruk.

Citeer dit