Samenvatting
In this paper, we study a functional equation for generating functions of the form
f(z) = g(z) ∑i=1,...,M pi f(αi(z)) + K(z), viz. a recursion with multiple recursive terms. We derive and analyze the solution of this equation for the case that the αi(z) are commutative contraction mappings. The results are applied to a wide range of queueing, autoregressive and branching processes.
f(z) = g(z) ∑i=1,...,M pi f(αi(z)) + K(z), viz. a recursion with multiple recursive terms. We derive and analyze the solution of this equation for the case that the αi(z) are commutative contraction mappings. The results are applied to a wide range of queueing, autoregressive and branching processes.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 7-23 |
Aantal pagina's | 17 |
Tijdschrift | Queueing Systems |
Volume | 102 |
Nummer van het tijdschrift | 1-2 |
Vroegere onlinedatum | 4 sep. 2022 |
DOI's | |
Status | Gepubliceerd - okt. 2022 |