Fully automatic and real-time catheter segmentation in X-ray fluoroscopy

Pierre Ambrosini, Daniel Ruijters, Wiro J. Niessen, Adriaan Moelker, Theo van Walsum

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

80 Citaten (Scopus)

Samenvatting

Augmenting X-ray imaging with 3D roadmap to improve guidance is a common strategy. Such approaches benefit from automated analysis of the X-ray images, such as the automatic detection and tracking of instruments. In this paper, we propose a real-time method to segment the catheter and guidewire in 2D X-ray fluoroscopic sequences. The method is based on deep convolutional neural networks. The network takes as input the current image and the three previous ones, and segments the catheter and guidewire in the current image. Subsequently, a centerline model of the catheter is constructed from the segmented image. A small set of annotated data combined with data augmentation is used to train the network. We trained the method on images from 182 X-ray sequences from 23 different interventions. On a testing set with images of 55 X-ray sequences from 5 other interventions, a median centerline distance error of 0.2 mm and a median tip distance error of 0.9 mm was obtained. The segmentation of the instruments in 2D X-ray sequences is performed in a real-time fully-automatic manner.

Originele taal-2Engels
TitelMedical Image Computing and Computer Assisted Intervention − MICCAI 2017
Subtitel20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II
RedacteurenMaxime Descoteaux, Lena Maier-Hein, Alfred Franz, Pierre Jannin, D. Louis Collins, Simon Duchesne
Plaats van productieCham
UitgeverijSpringer
Hoofdstuk65
Pagina's577-585
Aantal pagina's9
ISBN van elektronische versie978-3-319-66185-8
ISBN van geprinte versie978-3-319-66184-1
DOI's
StatusGepubliceerd - 2017
Extern gepubliceerdJa
Evenement20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duur: 11 sep. 201713 sep. 2017

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume10434
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Land/RegioCanada
StadQuebec City
Periode11/09/1713/09/17

Bibliografische nota

Publisher Copyright:
© Springer International Publishing AG 2017.

Vingerafdruk

Duik in de onderzoeksthema's van 'Fully automatic and real-time catheter segmentation in X-ray fluoroscopy'. Samen vormen ze een unieke vingerafdruk.

Citeer dit