Fully adaptive-gain-based intelligent failure-tolerant control for spacecraft attitude stabilization under actuator saturation

Ning Zhou, X. Cheng (Corresponding author), Yuanqing Xia, Yanjun Liu

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

This article investigates the attitude stabilization problem of a rigid spacecraft with actuator saturation and failures. Two neural network-based control schemes are proposed using anti-saturation adaptive strategies. To satisfy the input constraint, we design two controllers in a saturation function structure. Taking into account the modeling uncertainties, external disturbances, and adverse effects from actuator faults and failures, the first anti-saturation adaptive controller is implemented based on radial basis function neural networks (RBFNNs) with a fixed-time terminal sliding mode (FTTSM) containing a tunable parameter. Then, we upgrade the proposed controller to a fully adaptive-gain anti-saturation version, in order to strengthen the robustness and adaptivity with respect to actuator faults and failures, unknown mass properties, and external disturbances. In the two schemes, all of the designed adaptive parameters are scalars, thus they only require light computational load and can avoid the redesign process of the controller during spacecraft operation. Finally, the feasibility of the proposed methods is illustrated via two numerical examples.
Originele taal-2Engels
Aantal pagina's13
TijdschriftIEEE Transactions on Cybernetics
DOI's
StatusE-publicatie vóór gedrukte publicatie - 9 mrt 2020

Vingerafdruk Duik in de onderzoeksthema's van 'Fully adaptive-gain-based intelligent failure-tolerant control for spacecraft attitude stabilization under actuator saturation'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit