Full linear multistep methods as root-finders

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

10 Downloads (Pure)

Samenvatting

Root-finders based on full linear multistep methods (LMMs) use previous function values, derivatives and root estimates to iteratively find a root of a nonlinear function. As ODE solvers, full LMMs are typically not zero-stable. However, used as root-finders, the interpolation points are convergent so that such stability issues are circumvented. A general analysis is provided based on inverse polynomial interpolation, which is used to prove a fundamental barrier on the convergence rate of any LMM-based method. We show, using numerical examples, that full LMM-based methods perform excellently. Finally, we also provide a robust implementation based on Brent's method that is guaranteed to converge.

Originele taal-2Engels
Pagina's (van-tot)190-201
Aantal pagina's12
TijdschriftApplied Mathematics and Computation
Volume320
DOI's
StatusGepubliceerd - 1 mrt 2018

Vingerafdruk Duik in de onderzoeksthema's van 'Full linear multistep methods as root-finders'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit