From Statistical Mechanics to Process Control: A Tutorial

B. Erik Ydstie, Michael Hartmann, Leyla Özkan

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

75 Downloads (Pure)

Samenvatting

A system-theoretic basis for process control is developed using statistical mechanics as our point of departure. Specifically we show that control of a thermodynamic system can be discussed within the framework of passive systems theory. Using Boltzmann's definition of the entropy S = kB ln(Ω) and assuming that the distribution of states is uniformly distributed close to the equilibrium manifold we demonstrate the existence of a Lyapunov function based on the concept of available work. The LaSalle invariance principle now applies and we conclude that the microscopic (quantum) state converges to an ω-limit set close to the equilibrium manifold. The support of the measure V, interpreted as the volume of the system, defines the phase distribution in a multi-phase system. To connect such ideas with process control we define (approximate) balance equations, force, and flux variables.
Originele taal-2Engels
Pagina's (van-tot)33-38
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume55
Nummer van het tijdschrift18
DOI's
StatusGepubliceerd - 1 jul. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'From Statistical Mechanics to Process Control: A Tutorial'. Samen vormen ze een unieke vingerafdruk.

Citeer dit