From primal-dual to cost shares and back : a stronger LP relaxation for the Steiner forest problem

J. Könemann, S. Leonardi, G. Schäfer, S.H.M. Zwam, van

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

14 Citaten (Scopus)


We consider a game-theoretical variant of the Steiner forest problem, in which each of k users i strives to connect his terminal pair (s i , t i ) of vertices in an undirected, edge-weighted graph G. In [1] a natural primal-dual algorithm was shown which achieved a 2-approximate budget balanced cross-monotonic cost sharing method for this game. We derive a new linear programming relaxation from the techniques of [1] which allows for a simpler proof of the budget balancedness of the algorithm from [1]. Furthermore we show that this new relaxation is strictly stronger than the well-known undirected cut relaxation for the Steiner forest problem. We conclude the paper with a negative result, arguing that no cross-monotonic cost sharing method can achieve a budget balance factor of less than 2 for the Steiner tree and Steiner forest games. This shows that the results of [1,2] are essentially tight.
Originele taal-2Engels
TitelAutomata, Languages and Programming (Proceedings 32rd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005)
RedacteurenL. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi, M. Yung
Plaats van productieBerlin
ISBN van geprinte versie3-540-27580-0
StatusGepubliceerd - 2005

Publicatie series

NaamLecture Notes in Computer Science
ISSN van geprinte versie0302-9743


Duik in de onderzoeksthema's van 'From primal-dual to cost shares and back : a stronger LP relaxation for the Steiner forest problem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit