From inference to design: A comprehensive framework for uncertainty quantification in engineering with limited information

Ander Gray, Alexander Wimbush, Marco de Angelis (Corresponding author), Peter O. Hristov (Corresponding author), Dominic Calleja, Enrique Miralles-Dolz, Roberto Rocchetta (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Downloads (Pure)

Samenvatting

In this paper we present a framework for addressing a variety of engineering design challenges with limited empirical data and partial information. This framework includes guidance on the characterisation of a mixture of uncertainties, efficient methodologies to integrate data into design decisions, and to conduct reliability analysis, and risk/reliability based design optimisation. To demonstrate its efficacy, the framework has been applied to the NASA 2020 uncertainty quantification challenge. The results and discussion in the paper are with respect to this application.
Originele taal-2Engels
Artikelnummer108210
Aantal pagina's39
TijdschriftMechanical Systems and Signal Processing
Volume165
DOI's
StatusGepubliceerd - 15 feb 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'From inference to design: A comprehensive framework for uncertainty quantification in engineering with limited information'. Samen vormen ze een unieke vingerafdruk.

Citeer dit