Frequency domain sample maximum likelihood estimation for spatially dependent parameter estimation in PDEs

M. Van Berkel, G. Vandersteen, E. Geerardyn, R. Pintelon, H.J. Zwart, M. de Baar

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

16 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

The identification of the spatially dependent parameters in Partial Differential Equations (PDEs) is important in both physics and control problems. A methodology is presented to identify spatially dependent parameters from spatio-temporal measurements. Local non-rational transfer functions are derived based on three local measurements allowing for a local estimate of the parameters. A sample Maximum Likelihood Estimator (SMLE) in the frequency domain is used, because it takes noise properties into account and allows for high accuracy consistent parameter estimation. Confidence bounds on the parameters are estimated based on the noise properties of the measurements. This method is successfully applied to the simulations of a finite difference model of a parabolic PDE with piecewise constant parameters.

Originele taal-2Engels
Pagina's (van-tot)2113-2119
Aantal pagina's7
TijdschriftAutomatica
Volume50
Nummer van het tijdschrift8
DOI's
StatusGepubliceerd - 2014

Vingerafdruk

Duik in de onderzoeksthema's van 'Frequency domain sample maximum likelihood estimation for spatially dependent parameter estimation in PDEs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit