Frequency-domain bounds for nonnegative, unsharply band-limited functions

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)

Samenvatting

In this paper we present a technique for proving bounds of the Boas-Kac-Lukosz type for unsharply restricted functions with nonnegative Fourier transforms. Hence we consider functions F(x) ≥ 0, the Fourier transform f(u) of which satisfies |f(u)| ≤ ε for all u in a subset of (-∞,-1] ⋃ [1,∞), and are interested in bounds on |f(u)| for |u| ≤ 1. This technique gives rise to several "epsilonized" versions of the Boas-Kac-Lukosz bound (which deals with the case f(u) = 0, |u| ≥ 1). For instance, we find that |f(u)| ≤ L(u) + O(ε2/3), where L(u) is the Boas-Kac-Lukosz bound, and show by means of an example that this version is the sharpest possible with respect to its behaviour as a function of ε as ε ↓ 0. The technique also turns out tobe sufficiently powerful to yield the best bound as ε ↓ 0 in various other cases with less severe restrictions on f.

Originele taal-2Engels
Pagina's (van-tot)39-65
Aantal pagina's27
TijdschriftJournal of Fourier Analysis and Applications
Volume1
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 1 jan 1994
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Frequency-domain bounds for nonnegative, unsharply band-limited functions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit