Samenvatting
We present a methodology for obtaining a low memory and low computational load for a radar signal processing pipeline of a Frequency-Modulated Continuous-Wave (FMCW) radar tailored to embedded systems. Our analysis covers the entire radar signal processing pipeline, including radar signal conditioning, feature extraction, and neural network models, including pruning and quantization. We focus on a complex dataset of aircraft marshalling signals captured from an ultra-low-power, single-input, single-output (SISO) FMCW radar. With our methodology, we achieve a new state-of-the-art classification accuracy of 71.4\%, marking a significant improvement of over six percentage points while maintaining a reduced memory footprint and minimal computing requirements. This advancement contributes to developing efficient radar signal processing systems for resource-constrained applications and represents a crucial step toward realizing highly efficient and accurate radar-based gesture recognition systems.
Originele taal-2 | Engels |
---|---|
Titel | 2024 21st European Radar Conference, EuRAD 2024 |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 457-460 |
Aantal pagina's | 4 |
ISBN van elektronische versie | 978-2-87487-079-8 |
DOI's | |
Status | Gepubliceerd - 4 nov. 2024 |
Evenement | 21st European Radar Conference, EuRAD 2024 - Paris, Frankrijk Duur: 25 sep. 2024 → 27 sep. 2024 Congresnummer: 21 https://www.eumweek.com/ |
Congres
Congres | 21st European Radar Conference, EuRAD 2024 |
---|---|
Verkorte titel | EuRAD 2024 |
Land/Regio | Frankrijk |
Stad | Paris |
Periode | 25/09/24 → 27/09/24 |
Internet adres |
Financiering
This work has been funded by the Dutch Organization for Scientific Research (NWO) with Grant OCENWM.22.331.
Financiers | Financiernummer |
---|---|
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | OCENWM.22.331 |