Flux approximation scheme for the incompressible Navier-Stokes equations using local boundary value problems

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

We present a flux approximation scheme for the incompressible Navier- Stokes equations, that is based on a flux approximation scheme for the scalar advection-diffusion-reaction equation that we developed earlier. The flux is computed from local boundary value problems (BVPs) and is expressed as a sum of a homogeneous and an inhomogeneous part. The homogeneous part depends on the balance of the convective and viscous forces and the inhomogeneous part depends on source terms included in the local BVP.

Originele taal-2Engels
TitelNumerical Mathematics and Advanced Applications - ENUMATH 2015
RedacteurenB. Karasozen, M. Manguoglu, M. Tezer-Sezgin, S. Goktepe, O. Ugur
UitgeverijSpringer
Pagina's43-51
Aantal pagina's9
Volume112
ISBN van elektronische versie978-3-319-39929-4
ISBN van geprinte versie978-3-319-39927-0
DOI's
StatusGepubliceerd - 2016
Evenement2015 European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2015) - Middle East Technical University, Ankara, Turkije
Duur: 14 sep 201518 sep 2015

Publicatie series

NaamLecture Notes in Computational Science and Engineering
Volume112
ISSN van geprinte versie1439-7358

Congres

Congres2015 European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2015)
Verkorte titelENUMATH 2015
LandTurkije
StadAnkara
Periode14/09/1518/09/15

    Vingerafdruk

Citeer dit

Kumar, N., ten Thije Boonkkamp, J. H. M., & Koren, B. (2016). Flux approximation scheme for the incompressible Navier-Stokes equations using local boundary value problems. In B. Karasozen, M. Manguoglu, M. Tezer-Sezgin, S. Goktepe, & O. Ugur (editors), Numerical Mathematics and Advanced Applications - ENUMATH 2015 (Vol. 112, blz. 43-51). (Lecture Notes in Computational Science and Engineering; Vol. 112). Springer. https://doi.org/10.1007/978-3-319-39929-4_5