Flow visualization via partial differential equations

T. Preusser, M. Rumpf, A.C. Telea

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

2 Citaten (Scopus)


The visualization of stationary and time-dependent flow is an important and chaltenging topic in scientific visualization. lts aim is 10 represent transport phenomena govemed by vector fjelds in an intuitively understandable way. In this paper. we review the use of methods based on partial differential equations (PDEs) to post-process flow datasets for the purpose of visualization. This conneets flow visualization with image processing and mathematical muhi-scale modeIs. We introduce the coneepts of flow operators and scale-space and explain their usc in modeling post processing methods for flow data. 8ascd on this framework, we present several classes of PDE-based visualization methods: anisotropic linear diffusion for stationary flow; transport and diffusion for non-slalionary flow; continuous clustering based on phase-separation; and an algebraic clustering of a matrix-encoded flow operator. We illustrale the presented classes of methods with results obtained from concrete flow applications, using datasets in 20, flows on curved surfaces, and volumetrie 3D fields.
Originele taal-2Engels
TitelMathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration
RedacteurenT. Möller, B. Hamann, R.D. Russell
Plaats van productieBerlin
ISBN van geprinte versie978-3-540-25076-0
StatusGepubliceerd - 2009

Publicatie series

NaamMathematics and Visualization
ISSN van geprinte versie1612-3786


Duik in de onderzoeksthema's van 'Flow visualization via partial differential equations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit