Flow-level stability of channel-aware scheduling algorithms

S.C. Borst, M. Jonckheere

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)


Channel-aware scheduling strategies provide an effective mechanism for improving the throughput performance in wireless data networks by exploiting channel fluctuations. The performance of channel-aware scheduling algorithms has mainly been examined at the packet level for a static user population, often assuming infinite backlogs. Recently, some studies have also explored the flow-level performance in a scenario with user dynamics governed by the arrival and completion of random service demands over time. Although in certain cases the performance may be evaluated by means of a Processor-Sharing model, in general the flow-level behavior has remained largely intractable, even basic stability properties. In the present paper we derive simple necessary stability conditions, and show that these are also sufficient for a wide class of utility-based scheduling policies. This contrasts with the fact that the latter class of strategies generally fail to provide maximum-throughput guarantees at the packet level.
Originele taal-2Engels
TitelProceedings 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt'06, Boston MA, USA, April 3-6, 2006)
UitgeverijInstitute of Electrical and Electronics Engineers
ISBN van geprinte versie0-7803-9550-6
StatusGepubliceerd - 2006


Duik in de onderzoeksthema's van 'Flow-level stability of channel-aware scheduling algorithms'. Samen vormen ze een unieke vingerafdruk.

Citeer dit