Flow complex: general structure and algorithm

K. Buchin, J. Giesen

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    4 Citaten (Scopus)
    1 Downloads (Pure)


    The flow complex is a data structure, similar to the Delaunay triangulation, to organize a set of (weighted) points in Rd. Its structure has been examined in detail in two and three dimensions but only little is known about its structure in general. Here we propose the first algorithm for computing the flow complex in any dimension which reflects its recursive structure. On the basis of the algorithm we give a generalized and simplified proof of the homotopy equivalence of alpha- and flow-shapes.
    Originele taal-2Engels
    TitelProceedings 17th Canadian Conference on Computational Geometry (CCCG'05, Windsor, Ontario, Canada, August 10-12, 2005), Electronic proceedings
    UitgeverijThe CCCG Library
    StatusGepubliceerd - 2005

    Vingerafdruk Duik in de onderzoeksthema's van 'Flow complex: general structure and algorithm'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit