Flat-containing and shift-blocking sets in $F_2^r$

A. Blokhuis, V.F. Lev

Onderzoeksoutput: Boek/rapportRapportAcademic

33 Downloads (Pure)

Samenvatting

For non-negative integers $r\ge d$, how small can a subset $C\subset F_2^r$ be, given that for any $v\in F_2^r$ there is a $d$-flat passing through $v$ and contained in $C\cup\{v\}$? Equivalently, how large can a subset $B\subset F_2^r$ be, given that for any $v\in F_2^r$ there is a linear $d$-subspace not blocked non-trivially by the translate $B+v$? A number of lower and upper bounds are obtained.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's18
StatusGepubliceerd - 2013

Publicatie series

NaamarXiv.org
Volume1304.3233 [math.CO]

Vingerafdruk

Duik in de onderzoeksthema's van 'Flat-containing and shift-blocking sets in $F_2^r$'. Samen vormen ze een unieke vingerafdruk.

Citeer dit