First passage of time-reversible spectrally negative Markov additive processes

J. Ivanovs, M.R.H. Mandjes

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

8 Citaten (Scopus)

Samenvatting

We study the first passage process of a spectrally negative Markov additive process (MAP). The focus is on the background Markov chain at the times of the first passage. This process is a Markov chain itself with a transition rate matrix ¿. Assuming time reversibility, we show that all the eigenvalues of ¿ are real, with algebraic and geometric multiplicities being the same, which allows us to identify the Jordan normal form of ¿. Furthermore, this fact simplifies the analysis of fluctuations of a MAP. We provide an illustrative example and show that our findings greatly reduce the computational efforts required to obtain ¿ in the time-reversible case.
Originele taal-2Engels
Pagina's (van-tot)77-81
TijdschriftOperations Research Letters
Volume38
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 2010

Vingerafdruk

Duik in de onderzoeksthema's van 'First passage of time-reversible spectrally negative Markov additive processes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit