Samenvatting
We study the first passage process of a spectrally negative Markov additive process (MAP). The focus is on the background Markov chain at the times of the first passage. This process is a Markov chain itself with a transition rate matrix ¿. Assuming time reversibility, we show that all the eigenvalues of ¿ are real, with algebraic and geometric multiplicities being the same, which allows us to identify the Jordan normal form of ¿. Furthermore, this fact simplifies the analysis of fluctuations of a MAP. We provide an illustrative example and show that our findings greatly reduce the computational efforts required to obtain ¿ in the time-reversible case.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 77-81 |
Tijdschrift | Operations Research Letters |
Volume | 38 |
Nummer van het tijdschrift | 2 |
DOI's | |
Status | Gepubliceerd - 2010 |