First passage of a Markov additive process and generalized Jordan chains

Bernardo D' Auria, J. Ivanovs, O. Kella, M.R.H. Mandjes

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

34 Citaten (Scopus)

Samenvatting

In this paper we consider the first passage process of a spectrally negative Markov additive process (MAP). The law of this process is uniquely characterized by a certain matrix function, which plays a crucial role in fluctuation theory. We show how to identify this matrix using the theory of Jordan chains associated with analytic matrix functions. This result provides us with a technique that can be used to derive various further identities.
Originele taal-2Engels
Pagina's (van-tot)1048-1057
TijdschriftJournal of Applied Probability
Volume47
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - 2010

Vingerafdruk

Duik in de onderzoeksthema's van 'First passage of a Markov additive process and generalized Jordan chains'. Samen vormen ze een unieke vingerafdruk.

Citeer dit