First-order sequential convex programming using approximate diagonal QP subproblems

L.F.P. Etman, A.A. Groenwold, J.E. Rooda

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

30 Citaten (Scopus)
169 Downloads (Pure)

Samenvatting

Optimization algorithms based on convex separable approximations for optimal structural design often use reciprocal-like approximations in a dual setting; CONLIN and the method of moving asymptotes (MMA) are well-known examples of such sequential convex programming (SCP) algorithms. We have previously demonstrated that replacement of these nonlinear (reciprocal) approximations by their own second order Taylor series expansion provides a powerful new algorithmic option within the SCP class of algorithms. This note shows that the quadratic treatment of the original nonlinear approximations also enables the restatement of the SCP as a series of Lagrange-Newton QP subproblems. This results in a diagonal trust-region SQP type of algorithm, in which the second order diagonal terms are estimated from the nonlinear (reciprocal) intervening variables, rather than from historic information using an exact or a quasi-Newton Hessian approach. The QP formulation seems particularly attractive for problems with far more constraints than variables (when pure dual methods are at a disadvantage), or when both the number of design variables and the number of (active) constraints is very large.
Originele taal-2Engels
Pagina's (van-tot)479-488
Aantal pagina's10
TijdschriftStructural and Multidisciplinary Optimization
Volume45
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - 2012

Vingerafdruk

Duik in de onderzoeksthema's van 'First-order sequential convex programming using approximate diagonal QP subproblems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit