TY - JOUR
T1 - Finite volume element methods for two-dimensional three-temperature radiation diffusion equations
AU - Gao, Y.
AU - Zhao, X.
AU - Li, Y.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Two-dimensional three-temperature (2-D 3-T) radiation diffusion equations are widely used to approximately describe the evolution of radiation energy within a multi-material system and explain the exchange of energy among electrons, ions and photons. Their highly nonlinear, strong discontinuous and tightly coupled phenomena always make the numerical solution of such equations extremely challenging. In this paper, we construct two finite volume element schemes both satisfying the discrete conservation property. One of them can well preserve the positivity of analytical solutions, while the other one does not satisfy this property. To fix this defect, two as repair techniques are designed. In addition, as the numerical simulation of 2-D 3-T equations is very time consuming, we also devise a mesh adaptation algorithm to reduce the cost. Numerical results show that these new methods are practical and efficient in solving this kind of problems.
AB - Two-dimensional three-temperature (2-D 3-T) radiation diffusion equations are widely used to approximately describe the evolution of radiation energy within a multi-material system and explain the exchange of energy among electrons, ions and photons. Their highly nonlinear, strong discontinuous and tightly coupled phenomena always make the numerical solution of such equations extremely challenging. In this paper, we construct two finite volume element schemes both satisfying the discrete conservation property. One of them can well preserve the positivity of analytical solutions, while the other one does not satisfy this property. To fix this defect, two as repair techniques are designed. In addition, as the numerical simulation of 2-D 3-T equations is very time consuming, we also devise a mesh adaptation algorithm to reduce the cost. Numerical results show that these new methods are practical and efficient in solving this kind of problems.
KW - Cutoff method
KW - Energy conservation property
KW - Finite volume element method
KW - Mesh adaptation
KW - Repair technique
KW - Two-dimensional three-temperature radiation diffusion equations
UR - http://www.scopus.com/inward/record.url?scp=84978743146&partnerID=8YFLogxK
U2 - 10.4208/nmtma.2016.m1523
DO - 10.4208/nmtma.2016.m1523
M3 - Article
AN - SCOPUS:84978743146
SN - 1004-8979
VL - 9
SP - 470
EP - 496
JO - Numerical Mathematics: Theory, Methods and Applications
JF - Numerical Mathematics: Theory, Methods and Applications
IS - 3
ER -