Finite-time blow-up and variational approximation scheme for a Wigner-Fokker-Planck equation with a nonlocal perturbation

M.H. Duong

Onderzoeksoutput: Boek/rapportRapportAcademic

147 Downloads (Pure)

Samenvatting

The paper is concerned with analysis of a Wigner-Fokker-Planck equation with a nonlocal perturbation that consists both conservative and dissipative as well as nonlinear non-local effects. We first show that the system has a finite-time blow-up phenomenon. We then introduce a variational steepest descent approximation scheme for the system. At each step, the scheme minimizes an energy functional with respect to the Kantorovich functional associated with a certain cost function which is inspired by the rate functional in the Freidlin-Wentzell theory of large deviations for the underlying stochastic system.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijTechnische Universiteit Eindhoven
Aantal pagina's16
StatusGepubliceerd - 2013

Publicatie series

NaamCASA-report
Volume1313
ISSN van geprinte versie0926-4507

Vingerafdruk

Duik in de onderzoeksthema's van 'Finite-time blow-up and variational approximation scheme for a Wigner-Fokker-Planck equation with a nonlocal perturbation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit