Finite-time behavior of inner systems

J.H.A. Ludlage, S. Weiland, A.A. Stoorvogel, A.C.P.M. Backx

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)


In this paper, we investigate how nonminimum phase characteristics of a dynamical system affect its controllability and tracking properties. For the class of linear time-invariant dynamical systems, these characteristics are determined by transmission zeros of the inner factor of the system transfer function. The relation between nonminimum phase zeros and Hankel singular values of inner systems is studied and it is shown how the singular value structure of a suitably defined operator provides relevant insight about system invertibility and achievable tracking performance. The results are used to solve various tracking problems both on finite as well as on infinite time horizons. A typical receding horizon control scheme is considered and new conditions are derived to guarantee stabilizability of a receding horizon controller.
Originele taal-2Engels
Pagina's (van-tot)1134-1149
Aantal pagina's16
TijdschriftIEEE Transactions on Automatic Control
Nummer van het tijdschrift7
StatusGepubliceerd - 2003


Duik in de onderzoeksthema's van 'Finite-time behavior of inner systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit