Finite-size scaling at infinite-order phase transitions

R. Keesman, J. Lamers, R.A. Duine, G.T. Barkema

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)

Samenvatting

For systems with infinite-order phase transitions, in which an order parameter smoothly becomes nonzero, a new observable for finite-size scaling analysis is suggested. By construction this new observable has the favourable property of diverging at the critical point. Focussing on the example of the F-model we compare the analysis of this observable with that of another observable, which is also derived from the order parameter but does not diverge, as well as that of the associated susceptibility. We discuss the difficulties that arise in the finite-size scaling analysis of such systems. In particular we show that one may reach incorrect conclusions from large-system size extrapolations of observables that are not known to diverge at the critical point. Our work suggests that one should base finite-size scaling analyses for infinite-order phase transitions only on observables that are guaranteed to diverge.
Originele taal-2Engels
Artikelnummer093201
Pagina's (van-tot)1-13
TijdschriftJournal of Statistical Mechanics : Theory and Experiment
Volume2016
DOI's
StatusGepubliceerd - 28 mei 2016

Vingerafdruk

Duik in de onderzoeksthema's van 'Finite-size scaling at infinite-order phase transitions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit