Finite-difference methods for one-dimensional hyperbolic conservation laws

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

This article contains a survey of some important finite-difference methods for one-dimensional hyperbolic conservation laws. Weak solutions of hyperbolic conservation laws are introduced and the concept of entropy stability is discussed. Furthermore, the Riemann problem for hyperbolic conservation laws is solved. An introduction to finite-difference methods is given for which important concepts such as, e.g., conservativity, stability, and consistency are introduced. Godunov-type methods are elaborated for general systems of hyperbolic conservation laws. Finally, flux limiter methods are developed for the scalar nonlinear conservation law.
Originele taal-2Engels
Pagina's (van-tot)225-269
Aantal pagina's45
TijdschriftNumerical Methods for Partial Differential Equations
Volume10
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1994

Vingerafdruk Duik in de onderzoeksthema's van 'Finite-difference methods for one-dimensional hyperbolic conservation laws'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit