Finding shadows among disks

N. Jovanovic, J.H.M. Korst, Z. Aleksovski, W.P.A.J. Michiels, J.J. Lukkien, E.H.L. Aarts

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

Given a set of n non-overlapping unit disks in the plane, a line l is called blocked if it intersects at least one of the disks and a point p is called a shadow point if all lines containing p are blocked. In addition, a maximal closed set of shadow points is called a shadow region. We derive properties of shadow regions, and present an O(n^4) algorithm that outputs all shadow regions. We prove that the number of shadow regions is O(n^4) for some instances, which implies that the worst-case time complexity of the presented algorithm is optimal.
Originele taal-2Engels
TitelProceedings of the 24th Canadian Conference on Computational Geometry (CCCG 2012), Charlottetown, Prince Edward Island, Canada, August 8-10, 2012
Pagina's89-94
StatusGepubliceerd - 2012
Evenement24th Canadian Conference on Computational Geometry (CCCG 2012) - Charlottentown, Canada
Duur: 8 aug. 201210 aug. 2012
Congresnummer: 24
http://2012.cccg.ca/

Congres

Congres24th Canadian Conference on Computational Geometry (CCCG 2012)
Verkorte titelCCCG
Land/RegioCanada
StadCharlottentown
Periode8/08/1210/08/12
Ander24th Canadian Conference on Computational Geometry
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Finding shadows among disks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit