Femtosecond fluorescence studies of self-assembled helical aggregates in solution

P. Toele, J.J. Gorp, van, M. Glasbeek

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

24 Citaten (Scopus)
1 Downloads (Pure)


For the diamino-bipyridine based C3-symmetrical disk molecule, TAB, (sub)picosecond fluorescence transients have been observed by means of femtosecond fluorescence upconversion and picosecond time-correlated photon counting techniques. The dodecyl peripheral side chains of the synthetic compound are large enough to allow, in apolar solvents, self-assembling of the discotic molecules to helical aggregates. In polar solvents, the hydrogen bonding and p-p interactions pertaining to the chiral aggregation are compensated by solvation and self-assembling of the disklike molecules is disrupted. For comparison, time-resolved fluorescence measurements have been performed for the subgroup molecule, DAC, which is the (asymmetric) building block for TAB. It is concluded that, after pulsed photoexcitation, TAB and DAC exhibit excited-state intramolecular double proton transfer (ESIDPT) with a typical time of 200-300 fs, irrespective of the degree of aggregation. Picosecond components in the fluorescence of TAB and DAC, ranging from 3 to 25 ps, are representative of vibrational cooling effects in the excited product state. Only aggregated TAB shows a rapid (1 ps) decay of its fluorescence anisotropy. This component is attributed to excited-state energy transfer within the aggregate. Finally, the excited-state lifetime of TAB in the aggregated form is found to be an order of magnitude longer than that for TAB in its nonaggregated form. It is inferred that aggregation diminishes the influence of low-frequency twisting motions in the radiationless decay of the excited state.
Originele taal-2Engels
Pagina's (van-tot)10479-10487
TijdschriftJournal of Physical Chemistry A
Nummer van het tijdschrift46
StatusGepubliceerd - 2005

Vingerafdruk Duik in de onderzoeksthema's van 'Femtosecond fluorescence studies of self-assembled helical aggregates in solution'. Samen vormen ze een unieke vingerafdruk.

Citeer dit