Feedforward control in the presence of input nonlinearities: A Learning-based approach

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

3 Citaten (Scopus)
141 Downloads (Pure)

Samenvatting

Advanced feedforward control methods enable mechatronic systems to perform varying motion tasks with extreme accuracy and throughput. The aim of this paper is to develop a data-driven feedforward controller that addresses input nonlinearities, which are common in typical applications such as semiconductor back-end equipment. The developed method consists of parametric inverse-model feedforward that is optimized for tracking error reduction by exploiting ideas from iterative learning control. Results on a simulated set-up indicate improved performance over existing identification methods for systems with nonlinearities at the input.
Originele taal-2Engels
Pagina's (van-tot)235-240
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume55
Nummer van het tijdschrift37
DOI's
StatusGepubliceerd - 31 okt. 2022
Evenement2nd Modeling, Estimation and Control Conference, MECC 2022 - Jersey City, Verenigde Staten van Amerika
Duur: 2 okt. 20225 okt. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Feedforward control in the presence of input nonlinearities: A Learning-based approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit