Samenvatting
Advanced feedforward control methods enable mechatronic systems to perform varying motion tasks with extreme accuracy and throughput. The aim of this paper is to develop a data-driven feedforward controller that addresses input nonlinearities, which are common in typical applications such as semiconductor back-end equipment. The developed method consists of parametric inverse-model feedforward that is optimized for tracking error reduction by exploiting ideas from iterative learning control. Results on a simulated set-up indicate improved performance over existing identification methods for systems with nonlinearities at the input.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 235-240 |
Aantal pagina's | 6 |
Tijdschrift | IFAC-PapersOnLine |
Volume | 55 |
Nummer van het tijdschrift | 37 |
DOI's | |
Status | Gepubliceerd - 31 okt. 2022 |
Evenement | 2nd Modeling, Estimation and Control Conference, MECC 2022 - Jersey City, Verenigde Staten van Amerika Duur: 2 okt. 2022 → 5 okt. 2022 |