Federated Self-Training for Data-Efficient Audio Recognition

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)
5 Downloads (Pure)

Samenvatting

Federated learning is a distributed machine learning paradigm dealing with decentralized and personal datasets. Since data reside on devices like smartphones, labeling is entrusted to the clients or labels are extracted in an automated way. Specifically, in the case of audio data, acquiring semantic annotations can be prohibitively expensive and time-consuming. As a result, an abundance of audio data remains unlabeled and unexploited on users’ devices. Existing federated learning approaches largely focus on supervised learning without harnessing the unlabeled data. Here, we study the problem of semi-supervised learning of audio models in conjunction with federated learning. We propose FedSTAR, a self-training approach to exploit large-scale on-device unlabeled data to improve the generalization of audio recognition models. We conduct experiments on diverse public audio classification datasets and investigate the performance of our models under varying percentages of labeled data and show that with as little as 3% labeled data, FedSTAR on average can improve the recognition rate by 13.28% compared to the fully-supervised federated model.
Originele taal-2Engels
TitelICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's476-480
Aantal pagina's5
ISBN van elektronische versie978-1-6654-0540-9
ISBN van geprinte versie978-1-6654-0541-6
DOI's
StatusGepubliceerd - 27 apr. 2022
EvenementICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Virtual, Online, Singapore, Singapore
Duur: 23 mei 202227 mei 2022
Congresnummer: 47
https://2022.ieeeicassp.org/

Congres

CongresICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Verkorte titelICASSP 2022
Land/RegioSingapore
StadSingapore
Periode23/05/2227/05/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Federated Self-Training for Data-Efficient Audio Recognition'. Samen vormen ze een unieke vingerafdruk.

Citeer dit